

Optical splitters are based on planar light wave circuit technology and high precision alignment. MXN splitters can split or combine light from one or two fibers into N outgoing fibers uniformly over a wide spectral range with ultra-low insertion loss and low polarization dependent loss.

Features & Advantages

- Low Insertion Loss & Low PDL
- Superior Port to Port Uniformity
- ❖ Tested for FTTH optical high power levels
- ❖ Ultra broadband performance (1260 −1650nm)
- ❖ 100% tested for Insertion Loss and Return Loss
- Good uniformity and low polarization dependent loss (PDL)

Applications

- CATV Networks
- Passive Optical Networks
- ❖ Telecommunications & FTTx Networks

What of Customes: IRRA (PROJECT DISTORD BY JON) WHICH CHARGES WITH THE CHARGES WHOCH IN THE CHARGES WITH THE CHARGES WHO THE CHARGES WITH THE CHARGES WITH THE CHARGES WHO THE CHARGES WITH THE CHARGES WHO THE CHARG

Specification

Splitter	1X2	1X4	1X8	1x16	1x32	1x64	1x128	2x2	2x4	2x8	2x16	2x32	2x64	2x128
Insertion														
Loss Maximum														
(dB)	4	7.1	10.5	13.8	17.1	20.5	25.5	4.2	7.4	11	14.6	17.8	21.5	26
Uniformity	'	7.1	10.5	13.0	17.1	20.3	23.3	1.2	7.1	- 11	11.0	17.0	21.3	20
Maximum														
(dB)	0.3	0.5	0.8	1	1.5	2	2.6	1.1	1.2	1.6	2.2	2.4	2.8	3
PDL(dB)														
	<0.2	< 0.2	< 0.2	< 0.2	< 0.3	< 0.5	< 0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.3	< 0.5	< 0.8
Operating	1310 & 1550 nm													
Wavelength														
(dB) Return Loss	>55 for PC , >60 For APC													
(dB)	733 101 1C, 700 POLATC													
Directivity	>55													
(dB)														
Fiber Type	Single Mode Fiber													
	G.652D & G.657A compliant													
Operating	-40 to +85													
Temperature (°C)														
()														